Interesting Articles.




Solar Variability

If the ordinary citizen is to realistically assess the true impact of solar variability on earthly climate, to make some kind of sense of the ifs, whethers and suppositions, perhaps the most realistic method is to see if we can identify specific climate events in recent history and cross reference that to the kind of detailed solar records we now have available to see if any sensible match can be identified.

As an example, if we examine known, well recorded, events over the last couple of decades, for example the ’European Heat Wave of 2003’, the ‘Winter Cold 2009/10/11’ then cross reference those events with charts of solar activity then, yes of course, the heat wave did occur during solar max and the cold winters did occur during solar minimum. However there does not appear to be any serious, specific sunspot activity that would explain the extreme nature of those events, indeed sunspot activity seemed to be ‘pretty average’ for that part of the cycle at those specific times.

Until, that is, we examine the ‘Ap’ index where we find a massive spike in recorded activity at the time of the 2003 heat wave together with deep dips in activity December 09/10/11/12. These dips actually running counter to the overall rise in sunspot activity during that period.

Ap index Jan 17.gif

This would imply that the impact of geo-effective activity from solar sources other than just the sunspots does make a greater contribution to climate variability than is generally accepted.

This is achieved through the interaction with the upper atmospheric profile, rather than just the pure injection of energy. It needs also to be remembered that this profile variation does have an effect on surface climate through the movement of surface air masses; this can give the impression of warming when cooling is actually taking place – and vice versa – and can contribute to cooling by throwing increased amounts of warm, tropical air towards the poles from where the energy will, of course, eventually, radiate away.

So, can we expect to always have a direct correlation between solar impacts and global climate ?

Well no, not really. Much depends on the situation on the ground at the time; the pre-existing conditions are all important in determining what happens at the time of any impact.

The likelihood exists, of course, that overall solar behaviour at any one time will have pre-determined the general situation on the ground. Peak solar activity in the years prior to 2003 will have both made an upsurge in Ap activity more likely and pre-disposed the global climate towards a positive result for such an impact. Occurring as it did at the peak of northern summer it was at exactly the right time to give the result noted. Similarly, low activity during solar minimum will have exacerbated both the likelihood of a dip and the potential results of a sharp reduction in activity which, occurring in November/December each year gave the very cold winters experienced.

The question remains, of course, what caused a sharp dip to occur November/December each year for several years on the run? The answer to this lies in the bi-annual dip in geomagnetic activity coincident with the solstice, complicated – as always – by the ‘Geomagnetic Rope Theory’.

January 2017 … CD


COSMIC RAYS ARE INTENSIFYING: A neutron monitor at the South Pole is detecting an upswing in cosmic rays penetrating Earth’s atmosphere.  Here are the data, courtesy of the University of Delaware’s Bartol Research Institute:

Cosmic Rays.jpg

This is a sign of changing times on the sun. The solar cycle is shifting from Solar Maximum to Solar Minimum.  As the sun’s magnetic field weakens, cosmic rays are having an easier time penetrating the inner solar system.  Earth is in the cross-hairs of these high-energy particles.

Orbital Changes Over Time:

The angle of the Earth’s tilt is relatively stable over long periods of time. However, Earth’s axis does undergo a slight irregular motion known as nutation – a rocking, swaying, or nodding motion (like a gyroscope) – that has a period of 18.6 years. Earth’s axis is also subject to a slight wobble (like a spinning top), which is causing its orientation to change over time.

Known as precession, this process is causing the date of the seasons to slowly change over a 25,800 year cycle. Precession is not only the reason for the difference between a sidereal year and a tropical year, it is also the reason why the seasons will eventually flip. When this happens, summer will occur in the northern hemisphere during December and winter during June.

Precession, along with other orbital factors, is also the reason for what is known as “length-of-day variation”. Essentially, this is a phenomena where the dates of Earth’s perihelion and aphelion (which currently take place on Jan. 3rd and July 4th, respectively) change over time. Both of these motions are caused by the varying attraction of the Sun and the Moon on the Earth’s equatorial region.

Needless to say, Earth’s rotation and orbit around the Sun are not as simple we once thought. During the Scientific Revolution, it was a huge revelation to learn that the Earth was not a fixed point in the Universe, and that the “celestial spheres” were planets like Earth. But even then, astronomers like Copernicus and Galileo still believed that the Earth’s orbit was a perfect circle, and could not imagine that its rotation was subject to imperfections.

It’s only been with time that the true nature of our planet’s inclination and movements have come to be understood, and what we know is that they lead to some serious variations over time – both in the short run (i.e. seasonal change), and in the long term.




By James A. Marusek, Retired U.S. Navy Physicist who is warning us of what is to come.

General Discussion The sun is undergoing a state change. It is possible that we may be at the cusp of the next Little Ice Age. For several centuries the relationship between periods of quiet sun and a prolonged brutal cold climate on Earth (referred to as Little Ice Ages) have been recognized. But the exact mechanisms behind this relationship have remained a mystery. We exist in an age of scientific enlightenment, equipped with modern tools to measure subtle changes with great precision. Therefore it is important to try and come to grips with these natural climatic drivers and mold the evolution of theories that describe the mechanisms behind Little Ice Ages.

The sun changes over time. There are decadal periods when the sun is very active magnetically, producing many sunspots. These periods are referred to as Solar Grand Maxima. And then there are periods when the sun is very weak producing few sunspot. These periods are called Solar Grand Minima. Solar Grand Minima correspond to dark cold glooming periods called Little Ice Ages. And there are states in-between. During most of the 20th century, the sun was in a Solar Grand Maxima. But that came to an abrupt end beginning in July 2000. The sun produced 6 massive explosions in rapid succession. Each of these explosions produced solar proton events with a proton flux greater than 10,000 pfu @ >10 MeV. These occurred in July 2000, November 2000, September 2001, two in November 2001, and a final one in October 2003. And there hasn’t been any of this magnitude since. Then the sun produced one of the weakest solar minimums since the Ap Index was first recorded (beginning in 1932). The current solar cycle (Solar Cycle 24) is very weak. Not quite weak enough to be called a Solar Grand Minima but very close. It is analogous to a period referred to as a ‘Dalton Minimum’.

As we transitioned from a Grand Solar Maxima, which typified the 20th century to a magnetically quiet solar period similar to a Dalton Minimum (~1798-1823 A.D.), it gave us the opportunity to observe the changes in solar parameters across this transition.

Little Ice Age conditions are defined not only by colder temperatures but also by a shift in the patterns of wind streams. They produce long-lasting locked wind stream patterns responsible for great floods and great droughts. They also affect the cycle of seasons producing great irregularity and crop failures. Altered wind streams impacts the development of massive storms and hurricanes. These Little Ice Age conditions in the past caused poor crop yields, famines, major epidemics, mass migration, war, and major political upheavals.

Read the full document HERE: Little_Ice_Age_Theory


Astronomers Might Have Just Solved a Key Mystery About the Origin of Life

If a massive solar storm struck the Earth today, it could wipe out our technology and hurl us back to the dark ages. Lucky for us, events like this are quite rare. But four billion years ago, extreme space weather was probably the norm. And rather than bringing the apocalypse, it might have kick started life.

That’s the startling conclusion of research published in Nature Geoscience today, which builds on an earlier discovery about young, sun-like stars made with NASA’s Kepler Space Telescope. Baby suns, it turns out, are extremely eruptive, releasing mind-boggling amounts of energy during “solar super flares” that make our wildest space weather look like drizzle.

Now, NASA’s Vladimir Airapetian has shown that if our sun was equally active 4 billion years ago, it could have made the Earth more habitable. According to Airapetian’s models, as solar super flares pounded our atmosphere, they initiated chemical reactions that yielded climate-warming greenhouse gases and other essential ingredients for life.

“The Earth should have been in a deep freeze four billion years ago,” Airapetian told Gizmodo, referring to the “faint young sun paradox” first raised by Carl Sagan and George Mullen in 1972. The paradox came about when Sagan and Mullen realized that Earth had signs of liquid water as early as 4 billion years ago, while the sun was only 70 percent as bright as it is today. “The only way [to explain this] is to somehow incorporate a greenhouse effect,” Airapetian said.

Another early Earth puzzle is how the first biological molecules—DNA, RNA and proteins—scavenged enough nitrogen in order to form. Similar to today, the ancient Earth’s atmosphere was composed primarily of inert nitrogen gas (N2). While specialized bacteria called “nitrogen fixers” eventually figured out how to break N2 and turn it into ammonia (NH4), early biology lacked this ability.

…………………….(see full article)

Maddie Stone@themadstone

Maddie is a staff writer at Gizmodo

May 2016


EARTH’S MAGNETIC FIELD IS CHANGING: Anyone watching a compass needle point steadily north might suppose that Earth’s magnetic field is a constant. It’s not. Researchers have long known that changes are afoot. The north magnetic pole routinely moves, as much as 40 km/yr, causing compass needles to drift over time. Moreover, the global magnetic field has weakened 10% since the 19th century.

A new study by the European Space Agency’s constellation of Swarm satellites reveals that changes may be happening even faster than previously thought. In this map, blue depicts where Earth’s magnetic field is weak and red shows regions where it is strong:

Data from Swarm, combined with observations from the CHAMP and Ørsted satellites, show clearly that the field has weakened by about 3.5% at high latitudes over North America, while it has strengthened about 2% over Asia. The region where the field is at its weakest – the South Atlantic Anomaly – has moved steadily westward and weakened further by about 2%. These changes have occured over the relatively brief period between 1999 and mid-2016.

Earth’s magnetic field protects us from solar storms and cosmic rays. Less magnetism means more radiation can penetrate our planet’s atmosphere. Indeed, high altitude balloons launched by routinely detect increasing levels of cosmic rays over California. Perhaps the ebbing magnetic field over North America contributes to that trend.

As remarkable as these changes sound, they’re mild compared to what Earth’s magnetic field has done in the past. Sometimes the field completely flips, with north and the south poles swapping places. Such reversals, recorded in the magnetism of ancient rocks, are unpredictable. They come at irregular intervals averaging about 300,000 years; the last one was 780,000 years ago. Are we overdue for another? No one knows.

Swarm is a trio of satellites equipped with vector magnetometers capable of sensing Earth’s magnetic field all the way from orbital altitudes down to the edge of our planet’s core. The constellation is expected to continue operations at least until 2017, and possibly beyond, so stay tuned for updates.

May 2016



SOLAR CYCLE CRASHING: Anyone wondering why the sun has been so quiet lately? The reason why is shown in the graph below. The 11-year sunspot cycle is crashing:


For the past two years, the sunspot number has been dropping as the sun transitions from Solar Max to Solar Min. Fewer sunspots means there are fewer solar flares and coronal mass ejections (CMEs). As the explosions subside, we deem the sun “quiet.”

But how quiet is it, really? A widely-held misconception is that space weather stalls and becomes uninteresting during periods of low sunspot number. In fact, by turning the solar cycle sideways, we see that Solar Minimum brings many interesting changes. For instance, the upper atmosphere of Earth collapses, allowing space junk to accumulate around our planet. The heliosphere shrinks, bringing interstellar space closer to Earth. And galactic cosmic rays penetrate the inner solar system with relative ease. Indeed, a cosmic ray surge is already underway. (Goodbye sunspots, hello cosmic rays!)

Stay tuned for updates as the sunspot number continues to drop.

May 2016


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s